Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.806
Filtrar
1.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617541

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Proteínas Ribossômicas/genética , Proteínas Nucleares , Ribossomos/genética , Proteínas Mitocondriais
2.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599770

RESUMO

Translational regulation by non-coding RNAs is a mechanism commonly used by cells to fine-tune gene expression. A fragment derived from an archaeal valine tRNA (Val-tRF) has been previously identified to bind the small subunit of the ribosome and inhibit translation in Haloferax volcanii Here, we present three cryo-electron microscopy structures of Val-tRF bound to the small subunit of Sulfolobus acidocaldarius ribosomes at resolutions between 4.02 and 4.53 Å. Within these complexes, Val-tRF was observed to bind to conserved RNA-interacting sites, including the ribosomal decoding center. The binding of Val-tRF destabilizes helices h24, h44, and h45 and the anti-Shine-Dalgarno sequence of 16S rRNA. The binding position of this molecule partially overlaps with the translation initiation factor aIF1A and occludes the mRNA P-site codon. Moreover, we found that the binding of Val-tRF is associated with steric hindrance of the H69 base of 23S rRNA in the large ribosome subunit, thereby preventing 70S assembly. Our data exemplify how tRNA-derived fragments bind to ribosomes and provide new insights into the mechanisms underlying translation inhibition by Val-tRFs.


Assuntos
RNA de Transferência , Ribossomos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , Microscopia Crioeletrônica , Ribossomos/genética , RNA de Transferência/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Valina/análise , Valina/metabolismo
3.
Nat Commun ; 15(1): 2711, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565864

RESUMO

Regulatory arrest peptides interact with specific residues on bacterial ribosomes and arrest their own translation. Here, we analyse over 30,000 bacterial genome sequences to identify additional Sec/YidC-related arrest peptides, followed by in vivo and in vitro analyses. We find that Sec/YidC-related arrest peptides show patchy, but widespread, phylogenetic distribution throughout the bacterial domain. Several of the identified peptides contain distinct conserved sequences near the C-termini, but are still able to efficiently stall bacterial ribosomes in vitro and in vivo. In addition, we identify many arrest peptides that share an R-A-P-P-like sequence, suggesting that this sequence might serve as a common evolutionary seed to overcome ribosomal structural differences across species.


Assuntos
Proteínas de Escherichia coli , Biossíntese de Proteínas , Filogenia , Peptídeos/química , Ribossomos/genética , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo
4.
Nat Commun ; 15(1): 3296, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632236

RESUMO

DEAD-box ATPases play crucial roles in guiding rRNA restructuring events during the biogenesis of large (60S) ribosomal subunits, but their precise molecular functions are currently unknown. In this study, we present cryo-EM reconstructions of nucleolar pre-60S intermediates that reveal an unexpected, alternate secondary structure within the nascent peptidyl-transferase-center (PTC). Our analysis of three sequential nucleolar pre-60S intermediates reveals that the DEAD-box ATPase Dbp10/DDX54 remodels this alternate base pairing and enables the formation of the rRNA junction that anchors the mature form of the universally conserved PTC A-loop. Post-catalysis, Dbp10 captures rRNA helix H61, initiating the concerted exchange of biogenesis factors during late nucleolar 60S maturation. Our findings show that Dbp10 activity is essential for the formation of the ribosome active site and reveal how this function is integrated with subsequent assembly steps to drive the biogenesis of the large ribosomal subunit.


Assuntos
Peptidil Transferases , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ribossomos/genética , RNA Ribossômico/genética , RNA Helicases DEAD-box/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Proteínas Ribossômicas/genética
5.
Cell Syst ; 15(4): 388-408.e4, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636458

RESUMO

Genome-wide measurement of ribosome occupancy on mRNAs has enabled empirical identification of translated regions, but high-confidence detection of coding regions that overlap annotated coding regions has remained challenging. Here, we report a sensitive and robust algorithm that revealed the translation of 388 N-terminally truncated proteins in budding yeast-more than 30-fold more than previously known. We extensively experimentally validated them and defined two classes. The first class lacks large portions of the annotated protein and tends to be produced from a truncated transcript. We show that two such cases, Yap5truncation and Pus1truncation, have condition-specific regulation and distinct functions from their respective annotated isoforms. The second class of truncated protein isoforms lacks only a small region of the annotated protein and is less likely to be produced from an alternative transcript isoform. Many display different subcellular localizations than their annotated counterpart, representing a common strategy for dual localization of otherwise functionally identical proteins. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Genoma , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição de Zíper de Leucina Básica
6.
PLoS Comput Biol ; 20(3): e1011918, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442108

RESUMO

Processive enzymes like polymerases or ribosomes are often studied in bulk experiments by monitoring time-dependent signals, such as fluorescence time traces. However, due to biomolecular process stochasticity, ensemble signals may lack the distinct features of single-molecule signals. Here, we demonstrate that, under certain conditions, bulk signals from processive reactions can be decomposed to unveil hidden information about individual reaction steps. Using mRNA translation as a case study, we show that decomposing a noisy ensemble signal generated by the translation of mRNAs with more than a few codons is an ill-posed problem, addressable through Tikhonov regularization. We apply our method to the fluorescence signatures of in-vitro translated LepB mRNA and determine codon-position dependent translation rates and corresponding state-specific fluorescence intensities. We find a significant change in fluorescence intensity after the fourth and the fifth peptide bond formation, and show that both codon position and encoded amino acid have an effect on the elongation rate. This demonstrates that our approach enhances the information content extracted from bulk experiments, thereby expanding the range of these time- and cost-efficient methods.


Assuntos
Biossíntese de Proteínas , Ribossomos , Códon/genética , Códon/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , Fluorescência
7.
mBio ; 15(4): e0033324, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38511928

RESUMO

In recent years, it has become evident that the true complexity of bacterial proteomes remains underestimated. Gene annotation tools are known to propagate biases and overlook certain classes of truly expressed proteins, particularly proteoforms-protein isoforms arising from a single gene. Recent (re-)annotation efforts heavily rely on ribosome profiling by providing a direct readout of translation to fully describe bacterial proteomes. In this study, we employ a robust riboproteogenomic pipeline to conduct a systematic census of expressed N-terminal proteoform pairs, representing two isoforms encoded by a single gene raised by annotated and alternative translation initiation, in Salmonella. Intriguingly, conditional-dependent changes in relative utilization of annotated and alternative translation initiation sites (TIS) were observed in several cases. This suggests that TIS selection is subject to regulatory control, adding yet another layer of complexity to our understanding of bacterial proteomes. IMPORTANCE: With the emerging theme of genes within genes comprising the existence of alternative open reading frames (ORFs) generated by translation initiation at in-frame start codons, mechanisms that control the relative utilization of annotated and alternative TIS need to be unraveled and our molecular understanding of resulting proteoforms broadened. Utilizing complementary ribosome profiling strategies to map ORF boundaries, we uncovered dual-encoding ORFs generated by in-frame TIS usage in Salmonella. Besides demonstrating that alternative TIS usage may generate proteoforms with different characteristics, such as differential localization and specialized function, quantitative aspects of conditional retapamulin-assisted ribosome profiling (Ribo-RET) translation initiation maps offer unprecedented insights into the relative utilization of annotated and alternative TIS, enabling the exploration of gene regulatory mechanisms that control TIS usage and, consequently, the translation of N-terminal proteoform pairs.


Assuntos
Proteoma , Ribossomos , Proteoma/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Códon de Iniciação/metabolismo , Proteômica/métodos , Isoformas de Proteínas/genética , Fases de Leitura Aberta , Biossíntese de Proteínas
8.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474062

RESUMO

Several types of mood disorders lie along a continuum, with nebulous boundaries between them. Understanding the mechanisms that contribute to mood disorder complexity is critical for effective treatment. However, present treatments are largely centered around neurotransmission and receptor-based hypotheses, which, given the high instance of treatment resistance, fail to adequately explain the complexities of mood disorders. In this opinion piece, based on our recent results, we propose a ribosome hypothesis of mood disorders. We suggest that any hypothesis seeking to explain the diverse nature of mood disorders must incorporate infrastructure diversity that results in a wide range of effects. Ribosomes, with their mobility across neurites and complex composition, have the potential to become specialized during stress; thus, ribosome diversity and dysregulation are well suited to explaining mood disorder complexity. Here, we first establish a framework connecting ribosomes to the current state of knowledge associated with mood disorders. Then, we describe the potential mechanisms through which ribosomes could homeostatically regulate systems to manifest diverse mood disorder phenotypes and discuss approaches for substantiating the ribosome hypothesis. Investigating these mechanisms as therapeutic targets holds promise for transdiagnostic avenues targeting mood disorders.


Assuntos
Transtornos do Humor , Ribossomos , Humanos , Ribossomos/genética , Proteínas Ribossômicas/genética
9.
Nat Commun ; 15(1): 2205, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467613

RESUMO

Current gene silencing tools based on RNA interference (RNAi) or, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)‒Cas13 systems have critical drawbacks, such as off-target effects (RNAi) or collateral mRNA cleavage (CRISPR‒Cas13). Thus, a more specific method of gene knockdown is needed. Here, we develop CRISPRδ, an approach for translational silencing, harnessing catalytically inactive Cas13 proteins (dCas13). Owing to its tight association with mRNA, dCas13 serves as a physical roadblock for scanning ribosomes during translation initiation and does not affect mRNA stability. Guide RNAs covering the start codon lead to the highest efficacy regardless of the translation initiation mechanism: cap-dependent, internal ribosome entry site (IRES)-dependent, or repeat-associated non-AUG (RAN) translation. Strikingly, genome-wide ribosome profiling reveals the ultrahigh gene silencing specificity of CRISPRδ. Moreover, the fusion of a translational repressor to dCas13 further improves the performance. Our method provides a framework for translational repression-based gene silencing in eukaryotes.


Assuntos
RNA Guia de Sistemas CRISPR-Cas , Ribossomos , Animais , Códon de Iniciação/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inativação Gênica , Biossíntese de Proteínas/genética , Iniciação Traducional da Cadeia Peptídica , Mamíferos/genética
10.
Proc Natl Acad Sci U S A ; 121(11): e2321700121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442159

RESUMO

Ribosomes are often used in synthetic biology as a tool to produce desired proteins with enhanced properties or entirely new functions. However, repurposing ribosomes for producing designer proteins is challenging due to the limited number of engineering solutions available to alter the natural activity of these enzymes. In this study, we advance ribosome engineering by describing a novel strategy based on functional fusions of ribosomal RNA (rRNA) with messenger RNA (mRNA). Specifically, we create an mRNA-ribosome fusion called RiboU, where the 16S rRNA is covalently attached to selenocysteine insertion sequence (SECIS), a regulatory RNA element found in mRNAs encoding selenoproteins. When SECIS sequences are present in natural mRNAs, they instruct ribosomes to decode UGA codons as selenocysteine (Sec, U) codons instead of interpreting them as stop codons. This enables ribosomes to insert Sec into the growing polypeptide chain at the appropriate site. Our work demonstrates that the SECIS sequence maintains its functionality even when inserted into the ribosome structure. As a result, the engineered ribosomes RiboU interpret UAG codons as Sec codons, allowing easy and site-specific insertion of Sec in a protein of interest with no further modification to the natural machinery of protein synthesis. To validate this approach, we use RiboU ribosomes to produce three functional target selenoproteins in Escherichia coli by site-specifically inserting Sec into the proteins' active sites. Overall, our work demonstrates the feasibility of creating functional mRNA-rRNA fusions as a strategy for ribosome engineering, providing a novel tool for producing Sec-containing proteins in live bacterial cells.


Assuntos
Magnoliopsida , Selenocisteína , RNA Mensageiro/genética , RNA Ribossômico 16S , Selenoproteínas/genética , Ribossomos/genética , Códon de Terminação/genética , Escherichia coli/genética
11.
Wiley Interdiscip Rev RNA ; 15(2): e1833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433101

RESUMO

Selection of the correct start codon is critical for high-fidelity protein synthesis. In eukaryotes, this is typically governed by a multitude of initiation factors (eIFs), including eIF2·GTP that directly delivers the initiator tRNA (Met-tRNAi Met ) to the P site of the ribosome. However, numerous reports, some dating back to the early 1970s, have described other initiation factors having high affinity for the initiator tRNA and the ability of delivering it to the ribosome, which has provided a foundation for further work demonstrating non-canonical initiation mechanisms using alternative initiation factors. Here we provide a critical analysis of current understanding of eIF2A, eIF2D, and the MCT-1·DENR dimer, the evidence surrounding their ability to initiate translation, their implications in human disease, and lay out important key questions for the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Mechanisms Translation > Regulation.


Assuntos
Fatores de Iniciação em Eucariotos , RNA de Transferência de Metionina , Ribossomos , Humanos , Eucariotos , Fatores de Iniciação de Peptídeos , Ribossomos/genética , RNA , Fator de Iniciação 2 em Eucariotos
12.
Nat Commun ; 15(1): 1932, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431639

RESUMO

Studies have revealed dozens of functional peptides in putative 'noncoding' regions and raised the question of how many proteins are encoded by noncanonical open reading frames (ORFs). Here, we comprehensively annotate genome-wide translated ORFs across five eukaryotes (human, mouse, zebrafish, worm, and yeast) by analyzing ribosome profiling data. We develop a logistic regression model named PepScore based on ORF features (expected length, encoded domain, and conservation) to calculate the probability that the encoded peptide is stable in humans. Systematic ectopic expression validates PepScore and shows that stable complex-associating microproteins can be encoded in 5'/3' untranslated regions and overlapping coding regions of mRNAs besides annotated noncoding RNAs. Stable noncanonical proteins follow conventional rules and localize to different subcellular compartments. Inhibition of proteasomal/lysosomal degradation pathways can stabilize some peptides especially those with moderate PepScores, but cannot rescue the expression of short ones with low PepScores suggesting they are directly degraded by cellular proteases. The majority of human noncanonical peptides with high PepScores show longer lengths but low conservation across species/mammals, and hundreds contain trait-associated genetic variants. Our study presents a statistical framework to identify stable noncanonical peptides in the genome and provides a valuable resource for functional characterization of noncanonical translation during development and disease.


Assuntos
Perfil de Ribossomos , Ribossomos , Humanos , Animais , Camundongos , Ribossomos/genética , Ribossomos/metabolismo , Fases de Leitura Aberta/genética , Peixe-Zebra/genética , Peptídeos/genética , Peptídeos/metabolismo , Mamíferos/genética
13.
Signal Transduct Target Ther ; 9(1): 44, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38388452

RESUMO

Protein translation is a tightly regulated cellular process that is essential for gene expression and protein synthesis. The deregulation of this process is increasingly recognized as a critical factor in the pathogenesis of various human diseases. In this review, we discuss how deregulated translation can lead to aberrant protein synthesis, altered cellular functions, and disease progression. We explore the key mechanisms contributing to the deregulation of protein translation, including functional alterations in translation factors, tRNA, mRNA, and ribosome function. Deregulated translation leads to abnormal protein expression, disrupted cellular signaling, and perturbed cellular functions- all of which contribute to disease pathogenesis. The development of ribosome profiling techniques along with mass spectrometry-based proteomics, mRNA sequencing and single-cell approaches have opened new avenues for detecting diseases related to translation errors. Importantly, we highlight recent advances in therapies targeting translation-related disorders and their potential applications in neurodegenerative diseases, cancer, infectious diseases, and cardiovascular diseases. Moreover, the growing interest lies in targeted therapies aimed at restoring precise control over translation in diseased cells is discussed. In conclusion, this comprehensive review underscores the critical role of protein translation in disease and its potential as a therapeutic target. Advancements in understanding the molecular mechanisms of protein translation deregulation, coupled with the development of targeted therapies, offer promising avenues for improving disease outcomes in various human diseases. Additionally, it will unlock doors to the possibility of precision medicine by offering personalized therapies and a deeper understanding of the molecular underpinnings of diseases in the future.


Assuntos
Fenômenos Biológicos , Neoplasias , Humanos , Ribossomos/genética , Neoplasias/terapia , Neoplasias/tratamento farmacológico , RNA Mensageiro/genética , Biossíntese de Proteínas/genética
14.
Commun Biol ; 7(1): 196, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368456

RESUMO

Ribosomes are key to cellular self-fabrication and limit growth rate. While most enzymes are proteins, ribosomes consist of 1/3 protein and 2/3 ribonucleic acid (RNA) (in E. coli).Here, we develop a mechanistic model of a self-fabricating cell, validated across diverse growth conditions. Through resource balance analysis (RBA), we explore the variation in maximum growth rate with ribosome composition, assuming constant kinetic parameters.Our model highlights the importance of RNA instability. If we neglect it, RNA synthesis is always cheaper than protein synthesis, leading to an RNA-only ribosome at maximum growth rate. Upon accounting for RNA turnover, we find that a mixed ribosome composed of RNA and proteins maximizes growth rate. To account for RNA turnover, we explore two scenarios regarding the activity of RNases. In (a) degradation is proportional to RNA content. In (b) ribosomal proteins cooperatively mitigate RNA instability by protecting it from misfolding and subsequent degradation. In both cases, higher protein content elevates protein synthesis costs and simultaneously lowers RNA turnover expenses, resulting in mixed RNA-protein ribosomes. Only scenario (b) aligns qualitatively with experimental data across varied growth conditions.Our research provides fresh insights into ribosome biogenesis and evolution, paving the way for understanding protein-rich ribosomes in archaea and mitochondria.


Assuntos
Escherichia coli , Ribossomos , Escherichia coli/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA/metabolismo
15.
Nucleic Acids Res ; 52(6): 2848-2864, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38416577

RESUMO

During their maturation, ribosomal RNAs (rRNAs) are decorated by hundreds of chemical modifications that participate in proper folding of rRNA secondary structures and therefore in ribosomal function. Along with pseudouridine, methylation of the 2'-hydroxyl ribose moiety (Nm) is the most abundant modification of rRNAs. The majority of Nm modifications in eukaryotes are placed by Fibrillarin, a conserved methyltransferase belonging to a ribonucleoprotein complex guided by C/D box small nucleolar RNAs (C/D box snoRNAs). These modifications impact interactions between rRNAs, tRNAs and mRNAs, and some are known to fine tune translation rates and efficiency. In this study, we built the first comprehensive map of Nm sites in Drosophila melanogaster rRNAs using two complementary approaches (RiboMethSeq and Nanopore direct RNA sequencing) and identified their corresponding C/D box snoRNAs by whole-transcriptome sequencing. We de novo identified 61 Nm sites, from which 55 are supported by both sequencing methods, we validated the expression of 106 C/D box snoRNAs and we predicted new or alternative rRNA Nm targets for 31 of them. Comparison of methylation level upon different stresses show only slight but specific variations, indicating that this modification is relatively stable in D. melanogaster. This study paves the way to investigate the impact of snoRNA-mediated 2'-O-methylation on translation and proteostasis in a whole organism.


Assuntos
Drosophila melanogaster , RNA Nucleolar Pequeno , Animais , RNA Nucleolar Pequeno/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Sequência de Bases , RNA Ribossômico/metabolismo , Metilação
16.
J Biosci Bioeng ; 137(4): 321-328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342664

RESUMO

A novel, efficient and cost-effective approach for epitope identification of an antibody has been developed using a ribosome display platform. This platform, known as PURE ribosome display, utilizes an Escherichia coli-based reconstituted cell-free protein synthesis system (PURE system). It stabilizes the mRNA-ribosome-peptide complex via a ribosome-arrest peptide sequence. This system was complemented by next-generation sequencing (NGS) and an algorithm for analyzing binding epitopes. To showcase the effectiveness of this method, selection conditions were refined using the anti-PA tag monoclonal antibody with the PA tag peptide as a model. Subsequently, a random peptide library was constructed using 10 NNK triplet oligonucleotides via the PURE ribosome display. The resulting random peptide library-ribosome-mRNA complex was selected using a commercially available anti-HA (YPYDVPDYA) tag monoclonal antibody, followed by NGS and bioinformatic analysis. Our approach successfully identified the DVPDY sequence as an epitope within the hemagglutinin amino acid sequence, which was then experimentally validated. This platform provided a valuable tool for investigating continuous epitopes in antibodies.


Assuntos
Biblioteca de Peptídeos , Peptídeos , Mapeamento de Epitopos/métodos , Análise Custo-Benefício , Peptídeos/genética , Peptídeos/química , Anticorpos Monoclonais/genética , Epitopos/genética , Epitopos/química , Ribossomos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biologia Computacional , RNA Mensageiro
17.
Mol Cell ; 84(6): 1078-1089.e4, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340715

RESUMO

Aberrantly slow ribosomes incur collisions, a sentinel of stress that triggers quality control, signaling, and translation attenuation. Although each collision response has been studied in isolation, the net consequences of their collective actions in reshaping translation in cells is poorly understood. Here, we apply cryoelectron tomography to visualize the translation machinery in mammalian cells during persistent collision stress. We find that polysomes are compressed, with up to 30% of ribosomes in helical polysomes or collided disomes, some of which are bound to the stress effector GCN1. The native collision interface extends beyond the in vitro-characterized 40S and includes the L1 stalk and eEF2, possibly contributing to translocation inhibition. The accumulation of unresolved tRNA-bound 80S and 60S and aberrant 40S configurations identifies potentially limiting steps in collision responses. Our work provides a global view of the translation machinery in response to persistent collisions and a framework for quantitative analysis of translation dynamics in situ.


Assuntos
Biossíntese de Proteínas , Ribossomos , Animais , Ribossomos/genética , Ribossomos/metabolismo , Polirribossomos/genética , Polirribossomos/metabolismo , Mamíferos
18.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323828

RESUMO

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Assuntos
Vírus da Febre Aftosa , Animais , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Endopeptidases/metabolismo , Sítios Internos de Entrada Ribossomal , Proteases Virais 3C , Ubiquitinas/genética , Ubiquitinas/metabolismo
19.
Mol Cell ; 84(4): 614-615, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364778

RESUMO

Svetlov et al. identify the enzyme peptidyl-tRNA hydrolase as a ribosome-associated quality-control factor that promotes hydrolysis of the dislodged peptidyl-tRNA, which helps to recycle ribosomal subunits blocked by truncated nascent chains in bacteria.


Assuntos
Hidrolases de Éster Carboxílico , Ribossomos , Ribossomos/genética , Hidrolases de Éster Carboxílico/genética , Subunidades Ribossômicas , Bactérias
20.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38343327

RESUMO

Hyperactive ribosome biogenesis (RiboSis) fuels unrestricted cell proliferation, whereas genomic hallmarks and therapeutic targets of RiboSis in cancers remain elusive, and efficient approaches to quantify RiboSis activity are still limited. Here, we have established an in silico approach to conveniently score RiboSis activity based on individual transcriptome data. By employing this novel approach and RNA-seq data of 14 645 samples from TCGA/GTEx dataset and 917 294 single-cell expression profiles across 13 cancer types, we observed the elevated activity of RiboSis in malignant cells of various human cancers, and high risk of severe outcomes in patients with high RiboSis activity. Our mining of pan-cancer multi-omics data characterized numerous molecular alterations of RiboSis, and unveiled the predominant somatic alteration in RiboSis genes was copy number variation. A total of 128 RiboSis genes, including EXOSC4, BOP1, RPLP0P6 and UTP23, were identified as potential therapeutic targets. Interestingly, we observed that the activity of RiboSis was associated with TP53 mutations, and hyperactive RiboSis was associated with poor outcomes in lung cancer patients without TP53 mutations, highlighting the importance of considering TP53 mutations during therapy by impairing RiboSis. Moreover, we predicted 23 compounds, including methotrexate and CX-5461, associated with the expression signature of RiboSis genes. The current study generates a comprehensive blueprint of molecular alterations in RiboSis genes across cancers, which provides a valuable resource for RiboSis-based anti-tumor therapy.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Genômica , Mutação , Ribossomos/genética , Ribossomos/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...